Mastering Deep Learning using Apache Spark [Video]

Mastering Deep Learning using Apache Spark

Mastering Deep Learning using Apache Spark [Video]

English | MP4 | AVC 1920×1020 | AAC 48KHz 2ch | 2h 03m | 585 MB
eLearning | Skill level: All Levels

Mastering Deep Learning using Apache Spark [Video]: Develop industrial solutions based on deep learning models with Apache Spark

Deep learning has solved tons of interesting real-world problems in recent years. Apache Spark has emerged as the most important and promising machine learning tool and currently a stronger challenger of the Hadoop ecosystem. In this course, you’ll learn about the major branches of AI and get familiar with several core models of Deep Learning in its natural way.

You’ll begin with building deep learning networks to deal with speech data and explore tricks to solve NLP problems and classify video frames using RNN and LSTMs. You’ll also learn to implement the anomaly detection model that leverages reinforcement learning techniques to improve cyber security.

  • Configure a Convolutional Neural Network (CNN) to extract value from images
  • Create a deep network with multiple layers to perform computer vision
  • Classify speech and audio data
  • Leverage RNN and LSTMs for video classification for hospital data
  • Improve cybersecurity with deep reinforcement learning
  • Use a generative adversarial network for training
  • Create highly distributed algorithms using Spark

Moving on, you’ll explore some more advanced topics by performing prediction classification on image data using the GAN encoder and decoder. Then you’ll configure Spark to use multiple workers and CPUs to distribute your Neural Network training. Finally, you’ll track progress, solve the most common problems in your neural network, and debug your models that run within the distributed Spark engine.

DOWNLOAD

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.